• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
M. Benghanem, and S. M. Benaissa, “Tension and ampacity monitoring system for overhead lines,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 1234-1240, Oct. 2010.URL
2 
J. Renowden, “Overhead power lines conductor sag & tension, the fundamentals,” IEEE Susquehanna Section/Lehigh Valley PES, Allentown, PA, USA, May 2022.URL
3 
T. Liu, X. Zhang, and Q. Li, “Dynamic line rating using tension measurement for overhead transmission lines,” IEEE Transactions on Power Delivery, vol. 30, no. 1, pp. 576-583, Feb. 2015.URL
4 
M. A. Machado, M. S. Carvalho, and C. Vidal, “Embedded Sensors for Structural Health Monitoring: Methodologies and Applications Review,” Sensors, vol. 22, no. 21, 8320, Oct. 2022.DOI
5 
P. Kalutara, L. Piyathilaka, and U. Izhar, “Influence of Smart Sensors on Structural Health Monitoring Systems and Future Asset Management Practices,” Sensors, vol. 23, no. 19, 8279, Oct. 2023.DOI
6 
P. M. Pawar, and R. Ganguli, “Structural health monitoring using genetic fuzzy systems,” Springer, pp. 1-23, 2011.URL
7 
P. C. Chang, A. Flatau, and S. Liu, “Health monitoring of civil infrastructure,” Structural Health Monitoring, vol. 2, no. 3, pp. 257-267, Sep. 2003.URL
8 
M. Pech, J. Vrchota, and J. Bednář, “Predictive Maintenance and Intelligent Sensors in Smart Factory: Review,” Sensors, vol. 21, no. 4, 1470, Feb. 2021.DOI
9 
S. Sumitro, S. Kurokawa, K. Shimano, and M. L. Wang, “Monitoring based maintenance utilizing actual stress sensory technology,” Smart Materials and Structures, vol. 14, no. 3, pp. S68-S75, June 2005.URL
10 
E. R. de Lima, and L. Wanner, “An IoT-Based System for Monitoring the Health of Guyed Towers in Overhead Power Lines,” Sensors, vol. 21, no. 18, 6173, Sep. 2021.DOI
11 
A. Keshmiry, S. Hassani, M. Mousavi, and U. Dackermann, “Effects of Environmental and Operational Conditions on Structural Health Monitoring and Non-Destructive Testing: A Systematic Review,” Buildings, vol. 13, no. 4, 918, Mar. 2023.DOI
12 
J. A. Lozano-Galant, G. Ramos, and J. Turmo, “Low-Cost Wireless Structural Health Monitoring of Bridges,” Sensors, vol. 22, no. 15, 5725, July 2022.DOI
13 
A. Jalal, M. A. K. Quaid, S. B. u. Tahir, and K. Kim, “A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems,” Sensors, vol. 20, no. 22, 6670, Nov. 2020.DOI
14 
N. S. Khan, S. Islam, T. Gul, W. Khan, I. Khan, L. Ali, N. Khan, K. Waris, and L. Als, “Nonlinear vibration analysis of vortex-induced vibrations in overhead power lines with nonlinear vibration absorbers,” Nonlinear Dynamics, vol. 101, no. 2, pp. 845-860, Mar. 2020.URL
15 
P. Zhang, Z. Liu, and Y. Zhu, “Sag Measurement Method of Wind-Induced Vibration for Uniced Overhead Transmission Lines,” IEEE Transactions on Power Delivery, vol. 35, no. 2, pp. 649-657, Apr. 2020.URL
16 
J. Zhang, Y. Zhang, and C. Li, “A Novel Approach for Cable Tension Monitoring Based on Mode Shape Identification,” Sensors, vol. 22, no. 24, 9975, Dec. 2022.DOI
17 
M. Zhang, H. He, G. Li, and H. Wang, “Fully Automated and Robust Cable Tension Estimation of Wireless Sensor Networks System,” Sensors, vol. 21, no. 21, 7229, Oct. 2021.DOI
18 
J.-H. Kim, J.-M. Joung, and B.-S. Lee, “A Study on the Estimations of the Tension of the Overhead Wires Using Data from Acceleration Sensors,” Applied Sciences, vol. 12, no. 15, 7736, 2022.DOI
19 
S. Yoon, and J. W. Park, “Dynamic Response Measurement and Cable Tension Estimation Using an Unmanned Aerial Vehicle,” Remote Sensing, vol. 15, no. 16, 4000, Aug. 2023.DOI
20 
D. Jana, S. Nagarajaiah, Y. Yang, and S. Li, “Real-time cable tension estimation from acceleration measurements using wireless sensors with packet data losses: analytics with compressive sensing and sparse component analysis,” Journal of Civil Structural Health Monitoring, vol. 12, no. 2, pp. 797-815, Oct. 2021.URL
21 
S. W. Kim, B. G. Jeon, J. H. Cheung, S. D. Kim, J. B. Park, “Stay cable tension estimation using a vision-based monitoring system under various weather conditions,” Journal of Civil Structural Health Monitoring, vol. 7, pp. 343–357, 2017.URL
22 
A. Furukawa, K. Hirose, R. Kobayashi, “Tension Estimation Method for Cable With Damper Using Natural Frequencies,” Frontiers in Built Environment, vol. 7, 603857, 2021.URL
23 
X. Zhang, Lu. Y, Li. S, D. Sumarac, Z. Wang “Instantaneous identification of tension in bridge cables using synchrosqueezing wave-packet transform of acceleration responses,” Structure and Infrastructure Engineering, vol. 20, no. 2, pp. 199-214, June. 2022.DOI
24 
R. J. Janse, T. Hoekstra, K. J. Jager, C. Zoccali, G. Tripepi, F. W. Dekker, M. van Diepen, “Conducting correlation analysis: important limitations and pitfalls,” Clinical Kidney Journal, vol. 14, no. 11, pp. 2332-2345, 2021.DOI
25 
J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Noise Reduction in Speech Processing,” Springer, pp. 37-38, 2009.URL
26 
L. Di Persio, and N. Fraccarolo, “Energy Consumption Forecasts by Gradient Boosting Regression Trees,” Mathematics, vol. 11, no. 5, 1068, Feb. 2023.DOI
27 
J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001.URL
28 
“GradientBoostingRegressor,” scikit-learn 1.5.0 documentation. Available: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html. [Accessed: Jun. 19, 2024].URL