• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016. DOI:10.1109/CVPR.2016.90DOI
2 
G. Huang, Z.Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 4700-4708, 2017. DOI:10.1109/CVPR.2017.243DOI
3 
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit and N. Houlsby, “An Image is Worth 16x16 Words Transformers for Image Recognition at Scale,” Proceeding of 9th International Conference on Learning Representations, (ICLR), Virtual Event, Austria, May 3-7, 2021.URL
4 
A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskerver. “Language Models are Unsupervised Multitask Learners,” OpenAI blog, 1 (8), 9, 2019.URL
5 
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, “Language Models are Few-Shot Learners,” Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems, (NeurIPS), Dec, 6-12, 2020.URL
6 
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al., “GPT-4,” Technical Report, arXiv, 15 Mar 2023.URL
7 
J. M. Song, S. B. Lee, and A. R. Park, “A study on the industrial application trends of image recognition technology,” Journal of the Korea Contents Association, 2020.URL
8 
Redmon, J. and Farhadi, A, “YOLOv3: An incremental improvement,” arXiv, 2018.URL
9 
A. Bochkovskiy, C. Y. Wang and H. Y. M. Liao, “YOLOv4: Optimal speed and accuracy of object detection,” arXiv, 2020.DOI
10 
Gartner, Inc, “Forecast: AI Semiconductors, Worldwide 2021-2027,” April 6, 2023.URL
11 
Qualcomm, “The future of model efficiency for edge AI,” https://www.qualcomm.com/news/onq/2022/09/the-future-of-model-efficiency-for-edge-ai, 2022.URL
12 
M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. V. Baalen and T. Blankevoort, “A white paper on neural network quantization,” CoRR abs/2106.08295, 2021.DOI
13 
G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” CoRR abs/1503.02531, 2015.URL
14 
L. Liebenwein, C. Baykal, B. Carter, D. Gifford, and D. Rus, “Lost in pruning: The effects of pruning neural networks beyond test accuracy,” Proceedings of the Fourth Conference on Machine Learning and Systems, MLSys 2021, virtual, April 5-9, 2021.URL
15 
P. Indyk, A. Vakilian, and Y. Yuan, “Learning-based low-rank approximations,” Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems (NeurIPS), Dec, 8-14, 2019.URL